最小生成树与最短路径的区别以及实现方法


一 区别
最小生成树能够保证整个拓扑图的所有路径之和最小,但不能保证任意两点之间是最短路径。
最短路径是从一点出发,到达目的地的路径最小。

二 实现方法
1. 最小生成树
最小生成树有两种算法来得到:Prims算法和Kruskal算法。
Kruskal算法:根据边的加权值以递增的方式,一次找出加权值最低的边来构建最小生成树,而且规定:每次添加的边不能造成生成树有回路,知道找到N-1个边为止。
Prims算法:以每次加入一个的临界边来建立最小生成树,直到找到N-1个边为止。其规则为:以开始时生成树的集合(集合U)为起始的定点,然后找出与生成树集合邻接的边(集合V)中,加权值最小的边来建立生成树,为了确定新加入的边不会造成回路,所以每一个新加入的边,只允许有一个顶点在生成树集合中,重复执行此步骤,直到找到N-1个边为止。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页